Efficient and Stable Perovskite Solar Cells Using Low-Cost Aniline-Based Enamine Hole-Transporting Materials
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 45 vom: 16. Nov., Seite e1803735 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2018
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article aldehydes aniline enamine perovskite solar cells semiconductors |
| Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Metal-halide perovskites offer great potential to realize low-cost and flexible next-generation solar cells. Low-temperature-processed organic hole-transporting layers play an important role in advancing device efficiencies and stabilities. Inexpensive and stable hole-transporting materials (HTMs) are highly desirable toward the scaling up of perovskite solar cells (PSCs). Here, a new group of aniline-based enamine HTMs obtained via a one-step synthesis procedure is reported, without using a transition metal catalyst, from very common and inexpensive aniline precursors. This results in a material cost reduction to less than 1/5 of that for the archetypal spiro-OMeTAD. PSCs using an enamine V1091 HTM exhibit a champion power conversion efficiency of over 20%. Importantly, the unsealed devices with V1091 retain 96% of their original efficiency after storage in ambient air, with a relative humidity of 45% for over 800 h, while the devices fabricated using spiro-OMeTAD dropped down to 42% of their original efficiency after aging. Additionally, these materials can be processed via both solution and vacuum processes, which is believed to open up new possibilities for interlayers used in large-area all perovskite tandem cells, as well as many other optoelectronic device applications |
|---|---|
| Beschreibung: | Date Completed 08.11.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.201803735 |