Graph-Regularized Locality-Constrained Joint Dictionary and Residual Learning for Face Sketch Synthesis

Face sketch synthesis is a crucial issue in digital entertainment and law enforcement. It can bridge the considerable texture discrepancy between face photos and sketches. Most of the current face sketch synthesis approaches directly to learn the relationship between the photos and sketches, and it...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 2 vom: 20. Feb., Seite 628-641
1. Verfasser: Jiang, Junjun (VerfasserIn)
Weitere Verfasser: Yu, Yi, Wang, Zheng, Liu, Xianming, Ma, Jiayi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM288716957
003 DE-627
005 20231225060939.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2870936  |2 doi 
028 5 2 |a pubmed24n0962.xml 
035 |a (DE-627)NLM288716957 
035 |a (NLM)30235127 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
245 1 0 |a Graph-Regularized Locality-Constrained Joint Dictionary and Residual Learning for Face Sketch Synthesis 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.10.2018 
500 |a Date Revised 04.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Face sketch synthesis is a crucial issue in digital entertainment and law enforcement. It can bridge the considerable texture discrepancy between face photos and sketches. Most of the current face sketch synthesis approaches directly to learn the relationship between the photos and sketches, and it is very difficult for them to generate the individual specific features, which we call rare characteristics. In this paper, we propose a novel face sketch synthesis approach through residual learning. In contrast to traditional approaches, which aim to reconstruct a sketch image directly (i.e., learn the mapping relationship between the photo and sketch), we aim to predict the residual image by learning the mapping relationship between the photo and residual, i.e., the difference between the photo and sketch, given an observed photo. This technique will render optimizing the residual mapping easier than optimizing the original mapping and deriving rare characteristic information. We also introduce a joint dictionary learning algorithm by preserving the local geometry structure of a data space. Through the learned joint dictionary, we transform the face sketch synthesis from an image space to a new and compact space; the new and compact space is spanned by learned dictionary atoms, where the manifold assumption can be further guaranteed. Results show that the proposed method demonstrates an impressive performance in the face sketch synthesis task on three public face sketch datasets and various real-world photos. These results are derived by comparing the proposed method with several state-of-the-art techniques, including certain recently proposed deep learning-based approaches 
650 4 |a Journal Article 
700 1 |a Yu, Yi  |e verfasserin  |4 aut 
700 1 |a Wang, Zheng  |e verfasserin  |4 aut 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 2 vom: 20. Feb., Seite 628-641  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:2  |g day:20  |g month:02  |g pages:628-641 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2870936  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 2  |b 20  |c 02  |h 628-641