Cross-Scale Predictive Dictionaries

Sparse representations using data dictionaries provide an efficient model particularly for signals that do not enjoy alternate analytic sparsifying transformations. However, solving inverse problems with sparsifying dictionaries can be computationally expensive, especially when the dictionary under...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 2 vom: 12. Feb., Seite 803-814
1. Verfasser: Saragadam, Vishwanath (VerfasserIn)
Weitere Verfasser: Li, Xin, Sankaranarayanan, Aswin C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM288593693
003 DE-627
005 20231225060650.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2869719  |2 doi 
028 5 2 |a pubmed24n0961.xml 
035 |a (DE-627)NLM288593693 
035 |a (NLM)30222567 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Saragadam, Vishwanath  |e verfasserin  |4 aut 
245 1 0 |a Cross-Scale Predictive Dictionaries 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.10.2018 
500 |a Date Revised 12.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Sparse representations using data dictionaries provide an efficient model particularly for signals that do not enjoy alternate analytic sparsifying transformations. However, solving inverse problems with sparsifying dictionaries can be computationally expensive, especially when the dictionary under consideration has a large number of atoms. In this paper, we incorporate additional structure on to dictionary-based sparse representations for visual signals to enable speedups when solving sparse approximation problems. The specific structure that we endow onto sparse models is that of a multi-scale modeling where the sparse representation at each scale is constrained by the sparse representation at coarser scales. We show that this cross-scale predictive model delivers significant speedups, often in the range of , with little loss in accuracy for linear inverse problems associated with images, videos, and light fields 
650 4 |a Journal Article 
700 1 |a Li, Xin  |e verfasserin  |4 aut 
700 1 |a Sankaranarayanan, Aswin C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 2 vom: 12. Feb., Seite 803-814  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:2  |g day:12  |g month:02  |g pages:803-814 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2869719  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 2  |b 12  |c 02  |h 803-814