Cross-Scale Predictive Dictionaries

Sparse representations using data dictionaries provide an efficient model particularly for signals that do not enjoy alternate analytic sparsifying transformations. However, solving inverse problems with sparsifying dictionaries can be computationally expensive, especially when the dictionary under...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 2 vom: 12. Feb., Seite 803-814
Auteur principal: Saragadam, Vishwanath (Auteur)
Autres auteurs: Li, Xin, Sankaranarayanan, Aswin C
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM288593693
003 DE-627
005 20250224032039.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2869719  |2 doi 
028 5 2 |a pubmed25n0961.xml 
035 |a (DE-627)NLM288593693 
035 |a (NLM)30222567 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Saragadam, Vishwanath  |e verfasserin  |4 aut 
245 1 0 |a Cross-Scale Predictive Dictionaries 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.10.2018 
500 |a Date Revised 12.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Sparse representations using data dictionaries provide an efficient model particularly for signals that do not enjoy alternate analytic sparsifying transformations. However, solving inverse problems with sparsifying dictionaries can be computationally expensive, especially when the dictionary under consideration has a large number of atoms. In this paper, we incorporate additional structure on to dictionary-based sparse representations for visual signals to enable speedups when solving sparse approximation problems. The specific structure that we endow onto sparse models is that of a multi-scale modeling where the sparse representation at each scale is constrained by the sparse representation at coarser scales. We show that this cross-scale predictive model delivers significant speedups, often in the range of , with little loss in accuracy for linear inverse problems associated with images, videos, and light fields 
650 4 |a Journal Article 
700 1 |a Li, Xin  |e verfasserin  |4 aut 
700 1 |a Sankaranarayanan, Aswin C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 2 vom: 12. Feb., Seite 803-814  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:28  |g year:2019  |g number:2  |g day:12  |g month:02  |g pages:803-814 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2869719  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 2  |b 12  |c 02  |h 803-814