Comparing optimal and empirical stomatal conductance models for application in Earth system models

© 2018 John Wiley & Sons Ltd.

Détails bibliographiques
Publié dans:Global change biology. - 1999. - 24(2018), 12 vom: 12. Dez., Seite 5708-5723
Auteur principal: Franks, Peter J (Auteur)
Autres auteurs: Bonan, Gordon B, Berry, Joseph A, Lombardozzi, Danica L, Holbrook, N Michele, Herold, Nicholas, Oleson, Keith W
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:Global change biology
Sujets:Comparative Study Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Ball-Berry model CLM canopy conductance forest CO2 response land surface model scaling stomatal conductance plus... stomatal conductance model Water 059QF0KO0R Carbon Dioxide 142M471B3J
LEADER 01000caa a22002652 4500
001 NLM288554159
003 DE-627
005 20250224031049.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14445  |2 doi 
028 5 2 |a pubmed25n0961.xml 
035 |a (DE-627)NLM288554159 
035 |a (NLM)30218538 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Franks, Peter J  |e verfasserin  |4 aut 
245 1 0 |a Comparing optimal and empirical stomatal conductance models for application in Earth system models 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.03.2019 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 John Wiley & Sons Ltd. 
520 |a Earth system models (ESMs) rely on the calculation of canopy conductance in land surface models (LSMs) to quantify the partitioning of land surface energy, water, and CO2 fluxes. This is achieved by scaling stomatal conductance, gw , determined from physiological models developed for leaves. Traditionally, models for gw have been semi-empirical, combining physiological functions with empirically determined calibration constants. More recently, optimization theory has been applied to model gw in LSMs under the premise that it has a stronger grounding in physiological theory and might ultimately lead to improved predictive accuracy. However, this premise has not been thoroughly tested. Using original field data from contrasting forest systems, we compare a widely used empirical type and a more recently developed optimization-type gw model, termed BB and MED, respectively. Overall, we find no difference between the two models when used to simulate gw from photosynthesis data, or leaf gas exchange from a coupled photosynthesis-conductance model, or gross primary productivity and evapotranspiration for a FLUXNET tower site with the CLM5 community LSM. Field measurements reveal that the key fitted parameters for BB and MED, g1B and g1M, exhibit strong species specificity in magnitude and sensitivity to CO2 , and CLM5 simulations reveal that failure to include this sensitivity can result in significant overestimates of evapotranspiration for high-CO2 scenarios. Further, we show that g1B and g1M can be determined from mean ci /ca (ratio of leaf intercellular to ambient CO2 concentration). Applying this relationship with ci /ca values derived from a leaf δ13 C database, we obtain a global distribution of g1B and g1M , and these values correlate significantly with mean annual precipitation. This provides a new methodology for global parameterization of the BB and MED models in LSMs, tied directly to leaf physiology but unconstrained by spatial boundaries separating designated biomes or plant functional types 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Ball-Berry model 
650 4 |a CLM 
650 4 |a canopy conductance 
650 4 |a forest CO2 response 
650 4 |a land surface model 
650 4 |a scaling stomatal conductance 
650 4 |a stomatal conductance model 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
700 1 |a Bonan, Gordon B  |e verfasserin  |4 aut 
700 1 |a Berry, Joseph A  |e verfasserin  |4 aut 
700 1 |a Lombardozzi, Danica L  |e verfasserin  |4 aut 
700 1 |a Holbrook, N Michele  |e verfasserin  |4 aut 
700 1 |a Herold, Nicholas  |e verfasserin  |4 aut 
700 1 |a Oleson, Keith W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 12 vom: 12. Dez., Seite 5708-5723  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:24  |g year:2018  |g number:12  |g day:12  |g month:12  |g pages:5708-5723 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14445  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 12  |b 12  |c 12  |h 5708-5723