Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage

OBJECTIVE: The main objective of this study was to evaluate the effect of different feeding levels of a total mixed ration silage-based diet on feed intake, total tract digestion, enteric methane emissions, and energy partitioning in two beef cattle genotypes

Bibliographische Detailangaben
Veröffentlicht in:Asian-Australasian journal of animal sciences. - 1998. - 32(2019), 4 vom: 11. Apr., Seite 548-555
1. Verfasser: Subepang, Sayan (VerfasserIn)
Weitere Verfasser: Suzuki, Tomoyuki, Phonbumrung, Thamrongsak, Sommart, Kritapon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Asian-Australasian journal of animal sciences
Schlagworte:Journal Article Digestibility Energy Balance Greenhouse Gas Ruminants Zebu
Beschreibung
Zusammenfassung:OBJECTIVE: The main objective of this study was to evaluate the effect of different feeding levels of a total mixed ration silage-based diet on feed intake, total tract digestion, enteric methane emissions, and energy partitioning in two beef cattle genotypes
METHODS: Six mature bulls (three Thai natives, and three Thai natives - Charolais crossbreeds) were assigned in a replicated 3×3 Latin square design, with cattle breed genotype in separate squares, three periods of 21 days, and three energy feeding above maintenance levels (1.1, 1.5, and 2.0 MEm, where MEm is metabolizable energy requirement for maintenance). Bulls were placed in a metabolic cage equipped with a ventilated head box respiration system to evaluate digestibility, record respiration gases, and determine energy balance
RESULTS: Increasing the feeding level had no significant effect on digestibility but drastically reduced the enteric methane emission rate (p<0.05). Increasing the feeding level also significantly increased the energy retention and utilization efficiency (p<0.01). The Thai native cattle had greater enteric methane emission rate, digestibility, and energy utilization efficiency than the Charolais crossbred cattle (p<0.05). The daily metabolizable energy requirement for maintenance in Thai native cattle (388 kJ/kg BW0.75, where BW0.75 is metabolic body weight) was 15% less than that in Charolais crossbred cattle (444 kJ/kg BW0.75)
CONCLUSION: Our results suggested that the greater feeding level in zebu beef cattle fed above maintenance levels resulted in improved energy retention and utilization efficiency because of the reduction in enteric methane energy loss. The results also indicated higher efficiency of metabolisable energy utilization for growth and a lower energy requirement for maintenance in Bos indicus than in Bos taurus
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1011-2367
DOI:10.5713/ajas.18.0433