pH-sensitive microfiltration membrane prepared from polyethersulfone grafted with poly(itaconic acid) synthesized by simultaneous irradiation in homogeneous phase
Poly(itaconic acid) (PIA) was grafted onto polyethersulfone (PES) by homogeneously phased γ-ray irradiation. Kinetic polymerization observed was studied by analyzing the effect of irradiation dosages and monomer concentrations. Then, a pH-sensitive microfiltration (MF) membrane was prepared from the...
Publié dans: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 78(2018), 3-4 vom: 22. Sept., Seite 602-610 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | Water science and technology : a journal of the International Association on Water Pollution Research |
Sujets: | Journal Article Membranes, Artificial Polymers Succinates Sulfones polyether sulfone 25667-42-9 itaconic acid Q4516562YH |
Résumé: | Poly(itaconic acid) (PIA) was grafted onto polyethersulfone (PES) by homogeneously phased γ-ray irradiation. Kinetic polymerization observed was studied by analyzing the effect of irradiation dosages and monomer concentrations. Then, a pH-sensitive microfiltration (MF) membrane was prepared from these PES-g-PIA polymers with different degrees of grafting under phase inversion method. Finally, the contact angles, morphologies, pore sizes, deionized water permeability and filtration performance for aqueous polyethylene glycols solution of the MF membranes were studied. The results show that grafting PIA groups onto PES molecular chains endowed the MF membranes with effective pH-sensitive properties |
---|---|
Description: | Date Completed 28.01.2019 Date Revised 15.12.2020 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2018.330 |