Multivariate Mixture Model for Myocardial Segmentation Combining Multi-Source Images

The author proposes a method for simultaneous registration and segmentation of multi-source images, using the multivariate mixture model (MvMM) and maximum of log-likelihood (LL) framework. Specifically, the method is applied to the problem of myocardial segmentation combining the complementary info...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 12 vom: 13. Dez., Seite 2933-2946
1. Verfasser: Zhuang, Xiahai (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM288451244
003 DE-627
005 20231225060333.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2869576  |2 doi 
028 5 2 |a pubmed24n0961.xml 
035 |a (DE-627)NLM288451244 
035 |a (NLM)30207950 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhuang, Xiahai  |e verfasserin  |4 aut 
245 1 0 |a Multivariate Mixture Model for Myocardial Segmentation Combining Multi-Source Images 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.07.2020 
500 |a Date Revised 13.07.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The author proposes a method for simultaneous registration and segmentation of multi-source images, using the multivariate mixture model (MvMM) and maximum of log-likelihood (LL) framework. Specifically, the method is applied to the problem of myocardial segmentation combining the complementary information from multi-sequence (MS) cardiac magnetic resonance (CMR) images. For the image misalignment and incongruent data, the MvMM is formulated with transformations and is further generalized for dealing with the hetero-coverage multi-modality images (HC-MMIs). The segmentation of MvMM is performed in a virtual common space, to which all the images and misaligned slices are simultaneously registered. Furthermore, this common space can be divided into a number of sub-regions, each of which contains congruent data, thus the HC-MMIs can be modeled using a set of conventional MvMMs. Results show that MvMM obtained significantly better performance compared to the conventional approaches and demonstrated good potential for scar quantification as well as myocardial segmentation. The generalized MvMM has also demonstrated better robustness in the incongruent data, where some images may not fully cover the region of interest, and the full coverage can only be reconstructed combining the images from multiple sources 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 12 vom: 13. Dez., Seite 2933-2946  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:12  |g day:13  |g month:12  |g pages:2933-2946 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2869576  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 12  |b 13  |c 12  |h 2933-2946