Effects of weak static magnetic fields on the gene expression of seedlings of Arabidopsis thaliana

Copyright © 2018 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 231(2018) vom: 15. Dez., Seite 9-18
1. Verfasser: Dhiman, Sunil K (VerfasserIn)
Weitere Verfasser: Galland, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Arabidopsis Cryptochrome Magnetic field reversal Magnetoreception Radical-pair mechanism Static magnetic field Stimulus-response relationships
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier GmbH. All rights reserved.
Magnetic-field reception of animals and plants is currently discussed in the framework of a cryptochrome-based radical-pair mechanism. Efforts to unravel magnetoreception in plants suffered historically from several shortcomings, most prominently, the conspicuous absence of detailed stimulus-response relationships. To determine the sensitivity of seedlings of Arabidopsis thaliana to weak static magnetic fields we generated stimulus-response curves between near zero and 188 μT for the transcript levels of the genes rbcl, cab4, pal4 and ef1. The moderate magneto-responsiveness of dark-grown seedlings was greatly enhanced under blue light, and for rbcl and pal4 also under red light. The stimulus-response curves obtained under blue light of constant photon-fluence rate displayed multiple maxima and thus a pattern fundamentally different from that prevalent in plant and animal physiology. A double mutant lacking cryptochromes 1 and 2 displayed altered stimulus-response curves without losing, however, magneto-responsiveness completely. A reversal of the magnetic field direction substantially affected the gene expression and the quantity of CAB-protein (chlorophyll a,b-binding protein). The majority of our results are at variance with the notion of cryptochromes acting as the only magnetic-field sensors. They do not, however, exclude the possibility that cryptochromes participate in the magnetic field reception of Arabidopsis. The findings have the unexpected implication that cryptochrome- and phytochrome-mediated plant responses can be modulated by the strength and the orientation of the local geomagnetic field
Beschreibung:Date Completed 17.01.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2018.08.016