Patterns and Pace : Quantifying Diverse Exploration Behavior with Visualizations on the Web

The diverse and vibrant ecosystem of interactive visualizations on the web presents an opportunity for researchers and practitioners to observe and analyze how everyday people interact with data visualizations. However, existing metrics of visualization interaction behavior used in research do not f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 04. Sept.
1. Verfasser: Feng, Mi (VerfasserIn)
Weitere Verfasser: Peck, Evan, Harrison, Lane
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM288262905
003 DE-627
005 20240229161940.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2865117  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM288262905 
035 |a (NLM)30188824 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Mi  |e verfasserin  |4 aut 
245 1 0 |a Patterns and Pace  |b Quantifying Diverse Exploration Behavior with Visualizations on the Web 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The diverse and vibrant ecosystem of interactive visualizations on the web presents an opportunity for researchers and practitioners to observe and analyze how everyday people interact with data visualizations. However, existing metrics of visualization interaction behavior used in research do not fully reveal the breadth of peoples' open-ended explorations with visualizations. One possible way to address this challenge is to determine high-level goals for visualization interaction metrics, and infer corresponding features from user interaction data that characterize different aspects of peoples' explorations of visualizations. In this paper, we identify needs for visualization behavior measurement, and develop corresponding candidate features that can be inferred from users' interaction data. We then propose metrics that capture novel aspects of peoples' open-ended explorations, including exploration uniqueness and exploration pacing. We evaluate these metrics along with four other metrics recently proposed in visualization literature by applying them to interaction data from prior visualization studies. The results of these evaluations suggest that these new metrics 1) reveal new characteristics of peoples' use of visualizations, 2) can be used to evaluate statistical differences between visualization designs, and 3) are statistically independent of prior metrics used in visualization research. We discuss implications of these results for future studies, including the potential for applying these metrics in visualization interaction analysis, as well as emerging challenges in developing and selecting metrics depicting visualization explorations 
650 4 |a Journal Article 
700 1 |a Peck, Evan  |e verfasserin  |4 aut 
700 1 |a Harrison, Lane  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g (2018) vom: 04. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g year:2018  |g day:04  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2865117  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 04  |c 09