iForest : Interpreting Random Forests via Visual Analytics

As an ensemble model that consists of many independent decision trees, random forests generate predictions by feeding the input to internal trees and summarizing their outputs. The ensemble nature of the model helps random forests outperform any individual decision tree. However, it also leads to a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 05. Sept.
1. Verfasser: Zhao, Xun (VerfasserIn)
Weitere Verfasser: Wu, Yanhong, Lee, Dik Lun, Cui, Weiwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM288262883
003 DE-627
005 20240229161939.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2864475  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM288262883 
035 |a (NLM)30188822 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Xun  |e verfasserin  |4 aut 
245 1 0 |a iForest  |b Interpreting Random Forests via Visual Analytics 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a As an ensemble model that consists of many independent decision trees, random forests generate predictions by feeding the input to internal trees and summarizing their outputs. The ensemble nature of the model helps random forests outperform any individual decision tree. However, it also leads to a poor model interpretability, which significantly hinders the model from being used in fields that require transparent and explainable predictions, such as medical diagnosis and financial fraud detection. The interpretation challenges stem from the variety and complexity of the contained decision trees. Each decision tree has its unique structure and properties, such as the features used in the tree and the feature threshold in each tree node. Thus, a data input may lead to a variety of decision paths. To understand how a final prediction is achieved, it is desired to understand and compare all decision paths in the context of all tree structures, which is a huge challenge for any users. In this paper, we propose a visual analytic system aiming at interpreting random forest models and predictions. In addition to providing users with all the tree information, we summarize the decision paths in random forests, which eventually reflects the working mechanism of the model and reduces users' mental burden of interpretation. To demonstrate the effectiveness of our system, two usage scenarios and a qualitative user study are conducted 
650 4 |a Journal Article 
700 1 |a Wu, Yanhong  |e verfasserin  |4 aut 
700 1 |a Lee, Dik Lun  |e verfasserin  |4 aut 
700 1 |a Cui, Weiwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g (2018) vom: 05. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g year:2018  |g day:05  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2864475  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 05  |c 09