AIPNet : Image-to-Image Single Image Dehazing with Atmospheric Illumination Prior

The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an illposed and intractable problem of single image dehazing, we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 04. Sept.
1. Verfasser: Wang, Anna (VerfasserIn)
Weitere Verfasser: Wang, Wenhui, Liu, Jinglu, Gu, Nanhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM288262875
003 DE-627
005 20250224020133.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2868567  |2 doi 
028 5 2 |a pubmed25n0960.xml 
035 |a (DE-627)NLM288262875 
035 |a (NLM)30188821 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Anna  |e verfasserin  |4 aut 
245 1 0 |a AIPNet  |b Image-to-Image Single Image Dehazing with Atmospheric Illumination Prior 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an illposed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy imageto-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects 
650 4 |a Journal Article 
700 1 |a Wang, Wenhui  |e verfasserin  |4 aut 
700 1 |a Liu, Jinglu  |e verfasserin  |4 aut 
700 1 |a Gu, Nanhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 04. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2018  |g day:04  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2868567  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 04  |c 09