A Bayesian framework for the analog reconstruction of kymographs from fluorescence microscopy data

Kymographs are widely used to represent and analyse spatio-temporal dynamics of fluorescence markers along curvilinear biological compartments. These objects have a singular geometry, thus kymograph reconstruction is inherently an analog image processing task. However, the existing approaches are es...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 03. Sept.
1. Verfasser: Samuylov, Denis K (VerfasserIn)
Weitere Verfasser: Szekely, Gabor, Paul, Gregory
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM288212029
003 DE-627
005 20240229161938.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2867946  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM288212029 
035 |a (NLM)30183629 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Samuylov, Denis K  |e verfasserin  |4 aut 
245 1 2 |a A Bayesian framework for the analog reconstruction of kymographs from fluorescence microscopy data 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Kymographs are widely used to represent and analyse spatio-temporal dynamics of fluorescence markers along curvilinear biological compartments. These objects have a singular geometry, thus kymograph reconstruction is inherently an analog image processing task. However, the existing approaches are essentially digital: the kymograph photometry is sampled directly from the time-lapse images. As a result, such kymographs rely on raw image data that suffer from the degradations entailed by the image formation process and the spatio-temporal resolution of the imaging setup. In this work, we address these limitations and introduce a well-grounded Bayesian framework for the analog reconstruction of kymographs. To handle the movement of the object, we introduce an intrinsic description of kymographs using differential geometry: a kymograph is a photometry defined on a parameter space that is embedded in physical space by a time-varying map that follows the object geometry. We model the kymograph photometry as a Lévy innovation process, a flexible class of non-parametric signal priors. We account for the image formation process using the virtual microscope framework. We formulate a computationally tractable representation of the associated maximum a posteriori problem and solve it using a class of efficient and modular algorithms based on the alternating split Bregman. We assess the performance of our Bayesian framework on synthetic data and apply it to reconstruct the fluorescence dynamics along microtubules in vivo in the budding yeast S. cerevisiae. We demonstrate that our framework allows revealing patterns from single time-lapse data that are invisible on standard digital kymographs 
650 4 |a Journal Article 
700 1 |a Szekely, Gabor  |e verfasserin  |4 aut 
700 1 |a Paul, Gregory  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 03. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:03  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2867946  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 03  |c 09