Dense 3D Object Reconstruction from a Single Depth View
In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 12 vom: 05. Dez., Seite 2820-2834
|
1. Verfasser: |
Yang, Bo
(VerfasserIn) |
Weitere Verfasser: |
Rosa, Stefano,
Markham, Andrew,
Trigoni, Niki,
Wen, Hongkai |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |