Design of Lanthanide-Doped Colloidal Nanocrystals : Applications as Phosphors, Sensors, and Photocatalysts

The unique optical characteristics of lanthanides (Ln3+) such as high color purity, long excited-state lifetimes, less perturbation of excited states by the crystal field environment, and the easy spectral conversion of wavelengths through upconversion and downconversion processes have caught the at...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 19 vom: 14. Mai, Seite 6211-6230
1. Verfasser: Sarkar, Debashrita (VerfasserIn)
Weitere Verfasser: Ganguli, Sagar, Samanta, Tuhin, Mahalingam, Venkataramanan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The unique optical characteristics of lanthanides (Ln3+) such as high color purity, long excited-state lifetimes, less perturbation of excited states by the crystal field environment, and the easy spectral conversion of wavelengths through upconversion and downconversion processes have caught the attention of many scientists in the recent past. To broaden the scope of using these properties, it is important to make suitable Ln3+-doped materials, particularly in colloidal forms. In this feature article, we discuss the different synthesis strategies for making Ln3+-doped nanoparticles in colloidal forms, particularly ways of functionalizing hydrophobic surfaces to hydrophilic surfaces to enhance their dispersibility and luminescence in aqueous media. We have enumerated the various strategies and sensitizers utilized to increase the luminescence of the nanoparticles. Furthermore, the use of these colloidal nanoparticle systems in sensing application by the appropriate selection of capping ligands has been discussed. In addition, we have shown how the energy transfer efficiency from Ce3+ to Ln3+ ions can be utilized for the detection of toxic metal ions and small molecules. Finally, we discuss examples where the spectral conversion ability of these materials has been used in photocatalysis and solar cell applications
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b01593