A potato STRUBBELIG-RECEPTOR FAMILY member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity

Plant STRUBBELIG (SUB)-RECEPTOR FAMILY (SRF) genes encode putative leucine-rich repeat transmembrane receptor-like kinases. SRFs have been reported to play essential roles in tissue morphogenesis in many plant organs. Here, we show that a potato SRF family gene, StLRPK1, is involved in plant immunit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 69(2018), 22 vom: 26. Nov., Seite 5573-5586
1. Verfasser: Wang, Haixia (VerfasserIn)
Weitere Verfasser: Chen, Yanlin, Wu, Xingtong, Long, Zongshang, Sun, Chunlian, Wang, Hairong, Wang, Shumei, Birch, Paul R J, Tian, Zhendong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Plant Proteins Protein Serine-Threonine Kinases EC 2.7.11.1
Beschreibung
Zusammenfassung:Plant STRUBBELIG (SUB)-RECEPTOR FAMILY (SRF) genes encode putative leucine-rich repeat transmembrane receptor-like kinases. SRFs have been reported to play essential roles in tissue morphogenesis in many plant organs. Here, we show that a potato SRF family gene, StLRPK1, is involved in plant immunity. StLRPK1 is located at the cell plasma membrane and is strongly induced by culture filtrate from in vitro growth of the late blight pathogen Phytophthora infestans. Overexpression of StLRPK1 in stable transgenic potato or ectopic expression in Nicotiana benthamiana plants enhances P. infestans disease resistance, whereas RNA interference (RNAi) of StLRPK1 in potato decreases disease resistance. We found that StLRPK1 constitutively interacts with a pivotal co-receptor, SERK3A/BAK1, which plays a central role in plant immunity. Virus-induced gene silencing of SERK3A/BAK1 in N. benthamiana lines expressing StLRPK1 attenuated P. infestans resistance, indicating that SERK3A/BAK1 is required for StLRPK1-mediated immunity. Finally, we show that StLRPK1-triggered late blight resistance depends on the mitogen-activated protein kinase kinase MEK2 and mitogen-activated protein kinase WIPK. We propose a model in which StLRPK1 associates with SERK3A/BAK1 to positively regulate plant immunity to P. infestans through a MAPK cascade. These data provide new insights into our understanding of SRF function in plant immunity
Beschreibung:Date Completed 15.10.2019
Date Revised 13.12.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/ery310