RetainVis : Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records

We have recently seen many successful applications of recurrent neural networks (RNNs) on electronic medical records (EMRs), which contain histories of patients' diagnoses, medications, and other various events, in order to predict the current and future states of patients. Despite the strong p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 20. Aug.
1. Verfasser: Kwon, Bum Chul (VerfasserIn)
Weitere Verfasser: Choi, Min-Je, Kim, Joanne Taery, Choi, Edward, Kim, Young Bin, Kwon, Soonwook, Sun, Jimeng, Choo, Jaegul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM287753190
003 DE-627
005 20240229161926.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2865027  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM287753190 
035 |a (NLM)30136973 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kwon, Bum Chul  |e verfasserin  |4 aut 
245 1 0 |a RetainVis  |b Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We have recently seen many successful applications of recurrent neural networks (RNNs) on electronic medical records (EMRs), which contain histories of patients' diagnoses, medications, and other various events, in order to predict the current and future states of patients. Despite the strong performance of RNNs, it is often challenging for users to understand why the model makes a particular prediction. Such black-box nature of RNNs can impede its wide adoption in clinical practice. Furthermore, we have no established methods to interactively leverage users' domain expertise and prior knowledge as inputs for steering the model. Therefore, our design study aims to provide a visual analytics solution to increase interpretability and interactivity of RNNs via a joint effort of medical experts, artificial intelligence scientists, and visual analytics researchers. Following the iterative design process between the experts, we design, implement, and evaluate a visual analytics tool called RetainVis, which couples a newly improved, interpretable, and interactive RNN-based model called RetainEX and visualizations for users' exploration of EMR data in the context of prediction tasks. Our study shows the effective use of RetainVis for gaining insights into how individual medical codes contribute to making risk predictions, using EMRs of patients with heart failure and cataract symptoms. Our study also demonstrates how we made substantial changes to the state-of-the-art RNN model called RETAIN in order to make use of temporal information and increase interactivity. This study will provide a useful guideline for researchers that aim to design an interpretable and interactive visual analytics tool for RNNs 
650 4 |a Journal Article 
700 1 |a Choi, Min-Je  |e verfasserin  |4 aut 
700 1 |a Kim, Joanne Taery  |e verfasserin  |4 aut 
700 1 |a Choi, Edward  |e verfasserin  |4 aut 
700 1 |a Kim, Young Bin  |e verfasserin  |4 aut 
700 1 |a Kwon, Soonwook  |e verfasserin  |4 aut 
700 1 |a Sun, Jimeng  |e verfasserin  |4 aut 
700 1 |a Choo, Jaegul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g (2018) vom: 20. Aug.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g year:2018  |g day:20  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2865027  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 20  |c 08