Looks Good To Me : Visualizations As Sanity Checks

Famous examples such as Anscombe's Quartet highlight that one of the core benefits of visualizations is allowing people to discover visual patterns that might otherwise be hidden by summary statistics. This visual inspection is particularly important in exploratory data analysis, where analysts...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 20. Aug.
1. Verfasser: Correll, Michael (VerfasserIn)
Weitere Verfasser: Li, Mingwei, Kindlmann, Gordon, Scheidegger, Carlos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM287753069
003 DE-627
005 20240229161925.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2864907  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM287753069 
035 |a (NLM)30136960 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Correll, Michael  |e verfasserin  |4 aut 
245 1 0 |a Looks Good To Me  |b Visualizations As Sanity Checks 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Famous examples such as Anscombe's Quartet highlight that one of the core benefits of visualizations is allowing people to discover visual patterns that might otherwise be hidden by summary statistics. This visual inspection is particularly important in exploratory data analysis, where analysts can use visualizations such as histograms and dot plots to identify data quality issues. Yet, these visualizations are driven by parameters such as histogram bin size or mark opacity that have a great deal of impact on the final visual appearance of the chart, but are rarely optimized to make important features visible. In this paper, we show that data flaws have varying impact on the visual features of visualizations, and that the adversarial or merely uncritical setting of design parameters of visualizations can obscure the visual signatures of these flaws. Drawing on the framework of Algebraic Visualization Design, we present the results of a crowdsourced study showing that common visualization types can appear to reasonably summarize distributional data while hiding large and important flaws such as missing data and extraneous modes. We make use of these results to propose additional best practices for visualizations of distributions for data quality tasks 
650 4 |a Journal Article 
700 1 |a Li, Mingwei  |e verfasserin  |4 aut 
700 1 |a Kindlmann, Gordon  |e verfasserin  |4 aut 
700 1 |a Scheidegger, Carlos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g (2018) vom: 20. Aug.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g year:2018  |g day:20  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2864907  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 20  |c 08