Culling for Extreme-Scale Segmentation Volumes : A Hybrid Deterministic and Probabilistic Approach

With the rapid increase in raw volume data sizes, such as terabyte-sized microscopy volumes, the corresponding segmentation label volumes have become extremely large as well. We focus on integer label data, whose efficient representation in memory, as well as fast random data access, pose an even gr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 22. Aug.
1. Verfasser: Beyer, Johanna (VerfasserIn)
Weitere Verfasser: Mohammed, Haneen, Agus, Marco, Al-Awami, Ali K, Pfister, Hanspeter, Hadwiger, Markus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM287752933
003 DE-627
005 20240229161924.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2864847  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM287752933 
035 |a (NLM)30136947 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Beyer, Johanna  |e verfasserin  |4 aut 
245 1 0 |a Culling for Extreme-Scale Segmentation Volumes  |b A Hybrid Deterministic and Probabilistic Approach 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a With the rapid increase in raw volume data sizes, such as terabyte-sized microscopy volumes, the corresponding segmentation label volumes have become extremely large as well. We focus on integer label data, whose efficient representation in memory, as well as fast random data access, pose an even greater challenge than the raw image data. Often, it is crucial to be able to rapidly identify which segments are located where, whether for empty space skipping for fast rendering, or for spatial proximity queries. We refer to this process as culling. In order to enable efficient culling of millions of labeled segments, we present a novel hybrid approach that combines deterministic and probabilistic representations of label data in a data-adaptive hierarchical data structure that we call the label list tree. In each node, we adaptively encode label data using either a probabilistic constant-time access representation for fast conservative culling, or a deterministic logarithmic-time access representation for exact queries. We choose the best data structures for representing the labels of each spatial region while building the label list tree. At run time, we further employ a novel query-adaptive culling strategy. While filtering a query down the tree, we prune it successively, and in each node adaptively select the representation that is best suited for evaluating the pruned query, depending on its size. We show an analysis of the efficiency of our approach with several large data sets from connectomics, including a brain scan with more than 13 million labeled segments, and compare our method to conventional culling approaches. Our approach achieves significant reductions in storage size as well as faster query times 
650 4 |a Journal Article 
700 1 |a Mohammed, Haneen  |e verfasserin  |4 aut 
700 1 |a Agus, Marco  |e verfasserin  |4 aut 
700 1 |a Al-Awami, Ali K  |e verfasserin  |4 aut 
700 1 |a Pfister, Hanspeter  |e verfasserin  |4 aut 
700 1 |a Hadwiger, Markus  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g (2018) vom: 22. Aug.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g year:2018  |g day:22  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2864847  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 22  |c 08