High-Quality Bayesian Pansharpening

Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is ma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 1 vom: 22. Jan., Seite 227-239
1. Verfasser: Wang, Tingting (VerfasserIn)
Weitere Verfasser: Fang, Faming, Li, Fang, Zhang, Guixu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM287752895
003 DE-627
005 20231225054724.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2866954  |2 doi 
028 5 2 |a pubmed24n0959.xml 
035 |a (DE-627)NLM287752895 
035 |a (NLM)30136944 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Tingting  |e verfasserin  |4 aut 
245 1 0 |a High-Quality Bayesian Pansharpening 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.09.2018 
500 |a Date Revised 24.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion 
650 4 |a Journal Article 
700 1 |a Fang, Faming  |e verfasserin  |4 aut 
700 1 |a Li, Fang  |e verfasserin  |4 aut 
700 1 |a Zhang, Guixu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 1 vom: 22. Jan., Seite 227-239  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:1  |g day:22  |g month:01  |g pages:227-239 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2866954  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 1  |b 22  |c 01  |h 227-239