Learning Match Kernels on Grassmann Manifolds for Action Recognition

Action recognition has been extensively researched in computer vision due to its potential applications in a broad range of areas. The key to action recognition lies in modeling actions and measuring their similarity, which however poses great challenges. In this paper, we propose learning match ker...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 1 vom: 22. Jan., Seite 205-215
1. Verfasser: Zhang, Lei (VerfasserIn)
Weitere Verfasser: Zhen, Xiantong, Shao, Ling, Song, Jingkuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM287752852
003 DE-627
005 20231225054724.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2866688  |2 doi 
028 5 2 |a pubmed24n0959.xml 
035 |a (DE-627)NLM287752852 
035 |a (NLM)30136940 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lei  |e verfasserin  |4 aut 
245 1 0 |a Learning Match Kernels on Grassmann Manifolds for Action Recognition 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.09.2018 
500 |a Date Revised 24.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Action recognition has been extensively researched in computer vision due to its potential applications in a broad range of areas. The key to action recognition lies in modeling actions and measuring their similarity, which however poses great challenges. In this paper, we propose learning match kernels between actions on Grassmann manifold for action recognition. Specifically, we propose modeling actions as a linear subspace on the Grassmann manifold; the subspace is a set of convolutional neural network (CNN) feature vectors pooled temporally over frames in semantic video clips, which simultaneously captures local discriminant patterns and temporal dynamics of motion. To measure the similarity between actions, we propose Grassmann match kernels (GMK) based on canonical correlations of linear subspaces to directly match videos for action recognition; GMK is learned in a supervised way via kernel target alignment, which is endowed with a great discriminative ability to distinguish actions from different classes. The proposed approach leverages the strengths of CNNs for feature extraction and kernels for measuring similarity, which accomplishes a general learning framework of match kernels for action recognition. We have conducted extensive experiments on five challenging realistic data sets including Youtube, UCF50, UCF101, Penn action, and HMDB51. The proposed approach achieves high performance and substantially surpasses the state-of-the-art algorithms by large margins, which demonstrates the great effectiveness of proposed approach for action recognition 
650 4 |a Journal Article 
700 1 |a Zhen, Xiantong  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
700 1 |a Song, Jingkuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 1 vom: 22. Jan., Seite 205-215  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:1  |g day:22  |g month:01  |g pages:205-215 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2866688  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 1  |b 22  |c 01  |h 205-215