Cytomembrane-Structure-Inspired Active Ni-N-O Interface for Enhanced Oxygen Evolution Reaction

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 39 vom: 02. Sept., Seite e1803367
1. Verfasser: Huang, Jianwen (VerfasserIn)
Weitere Verfasser: Sun, Yinghui, Du, Xinchuan, Zhang, Yadong, Wu, Chunyang, Yan, Chaoyi, Yan, Yichao, Zou, Guifu, Wu, Wenqi, Lu, Ruifeng, Li, Yanrong, Xiong, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electrocatalyst interface nickel nitride nickel oxide oxygen evolution
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface/interface design is one of the most significant and promising motivations to develop high-performance catalysts for electrolytic water splitting. Here, the nature of cytomembrane having the most effective and functional surface structure is mimicked to fabricate a new configuration of Ni-N-O porous interface nanoparticles (NiNO INPs) with strongly interacting nanointerface between the Ni3 N and NiO domains, for enhancing the electrocatalytic oxygen evolution reaction (OER) performance. The combination of transmission electron microscopy and electrochemical investigations, tracking the correlation between microstructure evolution and catalytic activity, demonstrate the strongly coupled nanointerface for an approximately sixfold improvement of electrolytic efficiency. Density functional theory simulates the electrocatalytic process with a maximum of 85% reduction of the energy barrier. Further investigations find that the real active site for the OER in the NiNO INPs is the strongly coupled Ni-N-O nanointerface, not the derived amorphous hydroxide, during the OER process. The determination of the correlation of constructed nanointerface with catalytic properties suggests a significant strategy toward the rational design of catalysts for efficient water electrocatalysis
Beschreibung:Date Completed 27.09.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201803367