Methane potential of fruit and vegetable waste : an evaluation of the semi-continuous anaerobic mono-digestion
The anaerobic digestion (AD) of a high diversity blend of fruit and vegetable waste (FVW) generated in tropical conditions as a single substrate was performed. A continuously stirred tank reactor (CSTR) operated in semi-continuous regime was used for AD. The reactor performance was monitored with gr...
Veröffentlicht in: | Environmental technology. - 1993. - 41(2020), 7 vom: 01. März, Seite 921-930 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article BMP Biogas CSTR biodegradability organic loading rate Biofuels Methane OP0UW79H66 |
Zusammenfassung: | The anaerobic digestion (AD) of a high diversity blend of fruit and vegetable waste (FVW) generated in tropical conditions as a single substrate was performed. A continuously stirred tank reactor (CSTR) operated in semi-continuous regime was used for AD. The reactor performance was monitored with gradually increasing organic loading rates (OLRs) from 0.5 up to 5.0 gVS L-1 d-1. The biochemical methane potential (BMP) of FVW determined by batch bottles was 360 LN CH4 kgVS-1, with a biodegradability of 79%. A stable pH with an adequate level of buffering capacity was observed during the entire experiment. Methane yield indicated the best performance at an OLR of 3.0 gVS L-1 d-1, with 285 LN CH4 kgVS-1 added, reaching 79% of BMP. At an OLR over 3.0 gVS L-1 d-1 accumulation of volatile fatty acids (VFA) was detected; in particular, propionic acid was monitored, and a decreased methane yield was detected. Biogas production rate was 1.55 LN L-1 d-1 and showed linear increase according to increases in the OLR |
---|---|
Beschreibung: | Date Completed 20.02.2020 Date Revised 20.02.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2018.1515262 |