Dual Low-Rank Decompositions for Robust Cross-View Learning

Cross-view data are very popular contemporarily, as different viewpoints or sensors attempt to richly represent data in various views. However, the cross-view data from different views present a significant divergence, that is, cross-view data from the same category have a lower similarity than thos...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 1 vom: 16. Jan., Seite 194-204
1. Verfasser: Ding, Zhengming (VerfasserIn)
Weitere Verfasser: Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM287686884
003 DE-627
005 20231225054554.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2865885  |2 doi 
028 5 2 |a pubmed24n0958.xml 
035 |a (DE-627)NLM287686884 
035 |a (NLM)30130192 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
245 1 0 |a Dual Low-Rank Decompositions for Robust Cross-View Learning 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.09.2018 
500 |a Date Revised 24.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cross-view data are very popular contemporarily, as different viewpoints or sensors attempt to richly represent data in various views. However, the cross-view data from different views present a significant divergence, that is, cross-view data from the same category have a lower similarity than those in different categories but within the same view. Considering that each cross-view sample is drawn from two intertwined manifold structures, i.e., class manifold and view manifold, in this paper, we propose a robust cross-view learning framework to seek a robust view-invariant low-dimensional space. Specifically, we develop a dual low-rank decomposition technique to unweave those intertwined manifold structures from one another in the learned space. Moreover, we design two discriminative graphs to constrain the dual low-rank decompositions by fully exploring the prior knowledge. Thus, our proposed algorithm is able to capture more within-class knowledge and mitigate the view divergence to obtain a more effective view-invariant feature extractor. Furthermore, our proposed method is very flexible in addressing such a challenging cross-view learning scenario that we only obtain the view information of the training data while with the view information of the evaluation data unknown. Experiments on face and object benchmarks demonstrate the effective performance of our designed model over the state-of-the-art algorithms 
650 4 |a Journal Article 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 1 vom: 16. Jan., Seite 194-204  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:1  |g day:16  |g month:01  |g pages:194-204 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2865885  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 1  |b 16  |c 01  |h 194-204