Image Provenance Analysis at Scale

Prior art has shown it is possible to estimate, through image processing and computer vision techniques, the types and parameters of transformations that have been applied to the content of individual images to obtain new images. Given a large corpus of images and a query image, an interesting furth...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 16. Aug.
1. Verfasser: Moreira, Daniel (VerfasserIn)
Weitere Verfasser: Bharati, Aparna, Brogan, Joel, Pinto, Allan, Parowski, Michael, Bowyer, Kevin W, Flynn, Patrick J, Rocha, Anderson, Scheirer, Walter J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM287686833
003 DE-627
005 20240229161921.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2865674  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM287686833 
035 |a (NLM)30130187 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Moreira, Daniel  |e verfasserin  |4 aut 
245 1 0 |a Image Provenance Analysis at Scale 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Prior art has shown it is possible to estimate, through image processing and computer vision techniques, the types and parameters of transformations that have been applied to the content of individual images to obtain new images. Given a large corpus of images and a query image, an interesting further step is to retrieve the set of original images whose content is present in the query image, as well as the detailed sequences of transformations that yield the query image given the original images. This is a problem that recently has received the name of image provenance analysis. In these times of public media manipulation (e.g., fake news and meme sharing), obtaining the history of image transformations is relevant for fact checking and authorship verification, among many other applications. This article presents an end-to-end processing pipeline for image provenance analysis, which works at real-world scale. It employs a cutting-edge image filtering solution that is custom-tailored for the problem at hand, as well as novel techniques for obtaining the provenance graph that expresses how the images, as nodes, are ancestrally connected. A comprehensive set of experiments for each stage of the pipeline is provided, comparing the proposed solution with state-of-the-art results, employing previously published datasets. In addition, this work introduces a new dataset of real-world provenance cases from the social media site Reddit, along with baseline results 
650 4 |a Journal Article 
700 1 |a Bharati, Aparna  |e verfasserin  |4 aut 
700 1 |a Brogan, Joel  |e verfasserin  |4 aut 
700 1 |a Pinto, Allan  |e verfasserin  |4 aut 
700 1 |a Parowski, Michael  |e verfasserin  |4 aut 
700 1 |a Bowyer, Kevin W  |e verfasserin  |4 aut 
700 1 |a Flynn, Patrick J  |e verfasserin  |4 aut 
700 1 |a Rocha, Anderson  |e verfasserin  |4 aut 
700 1 |a Scheirer, Walter J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 16. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:16  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2865674  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 16  |c 08