Strong Electronic Interaction in Dual-Cation-Incorporated NiSe2 Nanosheets with Lattice Distortion for Highly Efficient Overall Water Splitting
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 35 vom: 01. Aug., Seite e1802121 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article bifunctional electrocatalyst dual-cation metal doping electronic interaction lattice distortion water splitting |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Exploring highly efficient and low-cost electrocatalysts for electrochemical water splitting is of importance for the conversion of intermediate energy. Herein, the synthesis of dual-cation (Fe, Co)-incorporated NiSe2 nanosheets (Fe, Co-NiSe2 ) and systematical investigation of their electrocatalytic performance for water splitting as a function of the composition are reported. The dual-cation incorporation can distort the lattice and induce stronger electronic interaction, leading to increased active site exposure and optimized adsorption energy of reaction intermediates compared to single-cation-doped or pure NiSe2 . As a result, the obtained Fe0.09 Co0.13 -NiSe2 porous nanosheet electrode shows an optimized catalytic activity with a low overpotential of 251 mV for oxygen evolution reaction and 92 mV for hydrogen evolution reaction (both at 10 mA cm-2 in 1 m KOH). When used as bifunctional electrodes for overall water splitting, the current density of 10 mA cm-2 is achieved at a low cell voltage of 1.52 V. This work highlights the importance of dual-cation doping in enhancing the electrocatalyst performance of transition metal dichalcogenides |
---|---|
Beschreibung: | Date Completed 26.09.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201802121 |