DNA Origami Nanophotonics and Plasmonics at Interfaces
DNA nanotechnology provides a versatile toolbox for creating custom and accurate shapes that can serve as versatile templates for nanopatterning. These DNA templates can be used as molecular-scale precision tools in, for example, biosensing, nanometrology, and super-resolution imaging, and biocompat...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 49 vom: 11. Dez., Seite 14911-14920 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Fluorescent Dyes Metals, Heavy DNA 9007-49-2 |
Zusammenfassung: | DNA nanotechnology provides a versatile toolbox for creating custom and accurate shapes that can serve as versatile templates for nanopatterning. These DNA templates can be used as molecular-scale precision tools in, for example, biosensing, nanometrology, and super-resolution imaging, and biocompatible scaffolds for arranging other nano-objects, for example, for drug delivery applications and molecular electronics. Recently, increasing attention has been paid to their potent use in nanophotonics since these modular templates allow a wide range of plasmonic and photonic ensembles ranging from DNA-directed nanoparticle and fluorophore arrays to entirely metallic nanostructures. This Feature Article focuses on the DNA-origami-based nanophotonics and plasmonics-especially on the methods that take advantage of various substrates and interfaces for the foreseen applications |
---|---|
Beschreibung: | Date Completed 05.08.2019 Date Revised 28.12.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b01843 |