Manganese-Oxide-Based Electrode Materials for Energy Storage Applications : How Close Are We to the Theoretical Capacitance?

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 47 vom: 01. Nov., Seite e1802569
1. Verfasser: Hu, Yating (VerfasserIn)
Weitere Verfasser: Wu, Yue, Wang, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review energy storage loading mass manganese oxides structural design theoretical capacitance
LEADER 01000naa a22002652 4500
001 NLM287572757
003 DE-627
005 20231225054320.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201802569  |2 doi 
028 5 2 |a pubmed24n0958.xml 
035 |a (DE-627)NLM287572757 
035 |a (NLM)30118549 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Yating  |e verfasserin  |4 aut 
245 1 0 |a Manganese-Oxide-Based Electrode Materials for Energy Storage Applications  |b How Close Are We to the Theoretical Capacitance? 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.11.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Of the transition metals, Mn has the greatest number of different oxides, most of which have a special tunnel structure that enables bulk redox reactions. The high theoretical capacitance and capacity results from a greater number of accessible oxidation states than other transition metals, wide potential window, and the high natural abundance make MnOx species promising electrode materials for energy storage applications. Although MnOx electrode materials have been intensely studied over the past decade, their electrochemical performance is still insufficient for practical applications. Currently, there is a trade-off between specific capacitance and loading mass. MnOx species have intrinsically poor electrical conductivity, and current structural designs are not sophisticated enough to accommodate enough redox-active sites. Recent studies have certainly made progress in increasing capacitance through making use of electrically conductive components and controlling the morphology of the MnOx species to expose more surface area. To increase the capacitance of MnOx electrodes to the largest extent without limiting loading mass, further structural design at the nanoscale and manipulation of the electrically conductive component are required. An ideal nanostructure is proposed to guide future research toward closing the gap between achieved and theoretical capacitance, without limiting the loading mass 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a energy storage 
650 4 |a loading mass 
650 4 |a manganese oxides 
650 4 |a structural design 
650 4 |a theoretical capacitance 
700 1 |a Wu, Yue  |e verfasserin  |4 aut 
700 1 |a Wang, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 47 vom: 01. Nov., Seite e1802569  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:47  |g day:01  |g month:11  |g pages:e1802569 
856 4 0 |u http://dx.doi.org/10.1002/adma.201802569  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 47  |b 01  |c 11  |h e1802569