The use of variable temperature 13 C solid-state MAS NMR and GIPAW DFT calculations to explore the dynamics of diethylcarbamazine citrate
© 2018 John Wiley & Sons, Ltd.
Veröffentlicht in: | Magnetic resonance in chemistry : MRC. - 1985. - 57(2019), 5 vom: 11. Mai, Seite 200-210 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Magnetic resonance in chemistry : MRC |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't DFT GIPAW calculations NMR crystallography chemical shifts diethylcarbamazine citrate dynamics |
Zusammenfassung: | © 2018 John Wiley & Sons, Ltd. Experimental 13 C solid-state magic-angle spinning (MAS) Nuclear Magnetic Resonance (NMR) as well as Density-Functional Theory (DFT) gauge-including projector augmented wave (GIPAW) calculations were used to probe disorder and local mobility in diethylcarbamazine citrate, (DEC)+ (citrate)- . This compound has been used as the first option drug for the treatment of filariasis, a disease endemic in tropical countries and caused by adult worms of Wuchereria bancrofti, which is transmitted by mosquitoes. We firstly present 2D 13 C─1 H dipolar-coupling-mediated heteronuclear correlation spectra recorded at moderate spinning frequency, to explore the intermolecular interaction between DEC and citrate molecules. Secondly, we investigate the dynamic behavior of (DEC)+ (citrate)- by varying the temperature and correlating the experimental MAS NMR results with DFT GIPAW calculations that consider two (DEC)+ conformers (in a 70:30 ratio) for crystal structures determined at 293 and 235 K. Solid-state NMR provides insights on slow exchange dynamics revealing conformational changes involving particularly the DEC ethyl groups |
---|---|
Beschreibung: | Date Completed 18.09.2019 Date Revised 18.09.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1097-458X |
DOI: | 10.1002/mrc.4790 |