Efficient Correlation Tracking via Center-Biased Spatial Regularization

Correlation filters (CFs) have been applied to visual tracking with success providing excellent performance in terms of accuracy and efficiency. The underlying periodic assumption of the training samples results in their great efficiency when using the fast Fourier transform (FFT), yet it also bring...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 13. Aug.
1. Verfasser: Zhou, Yun (VerfasserIn)
Weitere Verfasser: Han, Jianghong, Yang, Fan, Zhang, Kaihua, Hong, Richang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM287456412
003 DE-627
005 20240229161916.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2865278  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM287456412 
035 |a (NLM)30106730 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Yun  |e verfasserin  |4 aut 
245 1 0 |a Efficient Correlation Tracking via Center-Biased Spatial Regularization 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Correlation filters (CFs) have been applied to visual tracking with success providing excellent performance in terms of accuracy and efficiency. The underlying periodic assumption of the training samples results in their great efficiency when using the fast Fourier transform (FFT), yet it also brings unwanted boundary effects. To address this issue, the recently proposed spatially-regularized discriminative CF (SRDCF) method introduces a Gaussian weight function to regularize the learning filter, yielding favorable performances in accuracy but high computational complexity because the objective of the SRDCF cannot achieve a closed solution via the FFT. Motivated by SRDCF, we present an efficient and effective CF-based tracker using center-biased constraint weights (CBCWs), which improve simultaneously speed and accuracy. Specifically, we first construct a CBCW function by exploiting the symmetry of the Fourier transform. The values of the constraint weights are real in both time and frequency domains, so that the optimization can be directly solved in the frequency domain without any data transformation, thereby greatly reducing its computational complexity. Moreover, according to the average peak-tocorrelation energy value of the CF response, we propose an efficient and effective filter update strategy to handle occlusions during tracking. Extensive experiments on the OTB-2013, OTB- 2015, and VOT2016 benchmarks demonstrate that the proposed tracker significantly outperforms the baseline SRDCF in terms of accuracy and efficiency. Moreover, the proposed method performs favorably against 16 other representative state-of-the-art methods regarding robustness and success rate 
650 4 |a Journal Article 
700 1 |a Han, Jianghong  |e verfasserin  |4 aut 
700 1 |a Yang, Fan  |e verfasserin  |4 aut 
700 1 |a Zhang, Kaihua  |e verfasserin  |4 aut 
700 1 |a Hong, Richang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 13. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:13  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2865278  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 13  |c 08