Assessing Image Retrieval Quality at the First Glance

Image retrieval has achieved remarkable improvements with the rapid progress on visual representation and indexing techniques. Given a query image, search engines are expected to retrieve relevant results in which the top-ranked short list is of most value to users. However, it is challenging to mea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 10. Aug.
1. Verfasser: Sun, Shaoyan (VerfasserIn)
Weitere Verfasser: Zhou, Wengang, Tian, Qi, Yang, Ming, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM287456404
003 DE-627
005 20240229161915.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2864919  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM287456404 
035 |a (NLM)30106728 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Shaoyan  |e verfasserin  |4 aut 
245 1 0 |a Assessing Image Retrieval Quality at the First Glance 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Image retrieval has achieved remarkable improvements with the rapid progress on visual representation and indexing techniques. Given a query image, search engines are expected to retrieve relevant results in which the top-ranked short list is of most value to users. However, it is challenging to measure the retrieval quality on-the-fly without direct user feedbacks. In this paper, we aim at evaluating the quality of retrieval results at the first glance (i.e., with the top-ranked images). For each retrieval result, we compute a correlation based feature matrix that comprises of contextual information from the retrieval list, and then feed it into a convolutional neural network regression model for retrieval quality evaluation. In this proposed framework, multiple visual features are integrated together for robust representations. We optimize the output of this simpleyet- effective evaluation method to be consistent with Discounted Cumulative Gain (DCG), the intuitive measure for the quality of the top-ranked results. We evaluate our method in terms of prediction accuracy and consistency with the ground truth, and demonstrate its practicability in applications such as rank list selection and database image abundance analyses 
650 4 |a Journal Article 
700 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Yang, Ming  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 10. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:10  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2864919  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 10  |c 08