Convolutional Neural Network Architecture for Geometric Matching

We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine, homography or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural netwo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 11 vom: 08. Nov., Seite 2553-2567
1. Verfasser: Rocco, Ignacio (VerfasserIn)
Weitere Verfasser: Arandjelovic, Relja, Sivic, Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine, homography or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging PF, TSS and Caltech-101 datasets
Beschreibung:Date Completed 09.03.2020
Date Revised 09.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2018.2865351