Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 130(2018) vom: 10. Sept., Seite 529-541
1. Verfasser: Sharma, Marisha (VerfasserIn)
Weitere Verfasser: Gupta, Sunil K, Majumder, Baisakhi, Maurya, Vivek K, Deeba, Farah, Alam, Afroz, Pandey, Vivek
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Drought Salicylic acid Sink Soybean Tolerance Yield Amino Acids Plant Growth Regulators Plant Proteins mehr... Salicylic Acid O414PZ4LPZ
LEADER 01000caa a22002652 4500
001 NLM287376184
003 DE-627
005 20231227125845.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2018.08.001  |2 doi 
028 5 2 |a pubmed24n1224.xml 
035 |a (DE-627)NLM287376184 
035 |a (NLM)30098585 
035 |a (PII)S0981-9428(18)30339-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sharma, Marisha  |e verfasserin  |4 aut 
245 1 0 |a Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2018 
500 |a Date Revised 13.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2018 Elsevier Masson SAS. All rights reserved. 
520 |a Drought is a major concern for sustainable yield under changing environment. Soybean, an economically important oil and protein crop, is prone to drought resulting in yield instability. Salicylic acid (SA), a multifaceted growth hormone, modulates a series of parallel processes to confer drought tolerance thereby relieving yield limitations. The present study was performed in soybean plants treated with SA (0.5 mM) through seed pretreatment under drought regimes: severe stress (50% RWC) and moderate stress (75% RWC), and rehydration. Differential leaf proteome profiling with morphological, physiological and antioxidative metabolism studies were performed at two developmental stages (vegetative and flowering). This explained the tolerance attribution to soybean throughout the development attaining yield stability. Abundance of proteins involved in photosynthesis and ATP synthesis generated energy driving metabolic processes towards plant growth, development and stress acclimation. Carbon (C) metabolism proteins involved in growth, osmoregulation and C partition relieved drought-induced C impairment under SA. Defensive mechanisms against redox imbalance and protein misfolding and degradation under stress were enhanced as depicted by the abundance of proteins involved in redox balance and protein synthesis, assembly and degradation at vegetative stage. Redox signaling in chloroplast and its interplay with SA signaling triggered different defense responses as shown through thioredoxin protein abundance. Amino acid metabolism proteins abundance resulted in increased osmoprotectants accumulation like proline at initial stage which contributed later towards N (nitrogen) remobilization to developing sink. At later stage, abundance of these proteins maintained redox homeostasis and N remobilization for improved sink strength. The redox homeostasis was supported by the increased antioxidative metabolism in SA treated plants. The downregulation of proteins at flowering also contributed towards N remobilization. Yield potential was improved by SA under drought through acclimation with enhanced N and C remobilization to sink as demonstrated by increased yield parameters like seed number and weight per plant, thousand seed weight and harvest index. The potential of SA in conferring drought tolerance to plants to maintain sustainable yield possess future research interests 
650 4 |a Journal Article 
650 4 |a Drought 
650 4 |a Salicylic acid 
650 4 |a Sink 
650 4 |a Soybean 
650 4 |a Tolerance 
650 4 |a Yield 
650 7 |a Amino Acids  |2 NLM 
650 7 |a Plant Growth Regulators  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Salicylic Acid  |2 NLM 
650 7 |a O414PZ4LPZ  |2 NLM 
700 1 |a Gupta, Sunil K  |e verfasserin  |4 aut 
700 1 |a Majumder, Baisakhi  |e verfasserin  |4 aut 
700 1 |a Maurya, Vivek K  |e verfasserin  |4 aut 
700 1 |a Deeba, Farah  |e verfasserin  |4 aut 
700 1 |a Alam, Afroz  |e verfasserin  |4 aut 
700 1 |a Pandey, Vivek  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 130(2018) vom: 10. Sept., Seite 529-541  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:130  |g year:2018  |g day:10  |g month:09  |g pages:529-541 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2018.08.001  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 130  |j 2018  |b 10  |c 09  |h 529-541