2D Metal Oxyhalide-Derived Catalysts for Efficient CO2 Electroreduction

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 38 vom: 09. Sept., Seite e1802858
1. Verfasser: García de Arquer, F Pelayo (VerfasserIn)
Weitere Verfasser: Bushuyev, Oleksandr S, De Luna, Phil, Dinh, Cao-Thang, Seifitokaldani, Ali, Saidaminov, Makhsud I, Tan, Chih-Shan, Quan, Li Na, Proppe, Andrew, Kibria, Md Golam, Kelley, Shana O, Sinton, David, Sargent, Edward H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials CO2 electroreduction catalysis formate metal oxyhalides
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical reduction of CO2 is a compelling route to store renewable electricity in the form of carbon-based fuels. Efficient electrochemical reduction of CO2 requires catalysts that combine high activity, high selectivity, and low overpotential. Extensive surface reconstruction of metal catalysts under high productivity operating conditions (high current densities, reducing potentials, and variable pH) renders the realization of tailored catalysts that maximize the exposure of the most favorable facets, the number of active sites, and the oxidation state all the more challenging. Earth-abundant transition metals such as tin, bismuth, and lead have been proven stable and product-specific, but exhibit limited partial current densities. Here, a strategy that employs bismuth oxyhalides as a template from which 2D bismuth-based catalysts are derived is reported. The BiOBr-templated catalyst exhibits a preferential exposure of highly active Bi ( 11¯0 ) facets. Thereby, the CO2 reduction reaction selectivity is increased to over 90% Faradaic efficiency and simultaneously stable current densities of up to 200 mA cm-2 are achieved-more than a twofold increase in the production of the energy-storage liquid formic acid compared to previous best Bi catalysts
Beschreibung:Date Completed 19.09.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201802858