Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 08. Aug., Seite e1803267
1. Verfasser: Kim, In Ho (VerfasserIn)
Weitere Verfasser: Yun, Taeyeong, Kim, Jae-Eun, Yu, Hayoung, Sasikala, Suchithra Padmajan, Lee, Kyung Eun, Koo, Sung Hwan, Hwang, Hoseong, Jung, Hong Ju, Park, Jeong Young, Jeong, Hyeon Su, Kim, Sang Ouk
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electrical conductivity graphene fibers graphene oxide mechanical strength polydopamine
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inspired by mussel adhesive polydopamine (PDA), effective reinforcement of graphene-based liquid crystalline fibers to attain high mechanical and electrical properties simultaneously is presented. The two-step defect engineering, relying on bioinspired surface polymerization and subsequent solution infiltration of PDA, addresses the intrinsic limitation of graphene fibers arising from the folding and wrinkling of graphene layers during the fiber-spinning process. For a clear understanding of the mechanism of PDA-induced defect engineering, interfacial adhesion between graphene oxide sheets is straightforwardly analyzed by the atomic force microscopy pull-off test. Subsequently, PDA could be converted into an N-doped graphitic layer within the fiber structure by a mild thermal treatment such that mechanically strong fibers could be obtained without sacrificing electrical conductivity. Bioinspired graphene-based fiber holds great promise for a wide range of applications, including flexible electronics, multifunctional textiles, and wearable sensors
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.201803267