|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM287258955 |
003 |
DE-627 |
005 |
20231225053619.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.8b01834
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0957.xml
|
035 |
|
|
|a (DE-627)NLM287258955
|
035 |
|
|
|a (NLM)30086636
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shi, Guifang
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An Antifouling Hydrogel Containing Silver Nanoparticles for Modulating the Therapeutic Immune Response in Chronic Wound Healing
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.06.2020
|
500 |
|
|
|a Date Revised 08.06.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Patients with diabetic wounds have deficient local and systemic cellular immunity. Herein, a new silver nanoparticle-containing hydrogel with antifouling properties was developed for enhancing the immune response in diabetic wound healing. The antifouling property was obtained by adjusting the composition of cationic chitosan and anionic dextran to approach zero charge. Furthermore, this hybrid hydrogel showed long-lasting and broad-spectrum antibacterial activity. Rapid wound contraction was observed after the treatment with the hydrogel, which suggested its superior healing activity to promote fibroblast migration, granulation tissue formation, and angiogenesis. The upregulation of CD68+ and CD3+ expression levels demonstrated that the hydrogel could trigger immune responses in the treatment of wound healing. These results show that this antifouling hybrid hydrogel as a wound dressing provided a promising strategy for the treatment of diabetic ulcers
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Anti-Bacterial Agents
|2 NLM
|
650 |
|
7 |
|a Dextrans
|2 NLM
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
650 |
|
7 |
|a Silver
|2 NLM
|
650 |
|
7 |
|a 3M4G523W1G
|2 NLM
|
650 |
|
7 |
|a Chitosan
|2 NLM
|
650 |
|
7 |
|a 9012-76-4
|2 NLM
|
700 |
1 |
|
|a Chen, Wenting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Xiaomei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xinge
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Zhongming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 35(2019), 5 vom: 05. Feb., Seite 1837-1845
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2019
|g number:5
|g day:05
|g month:02
|g pages:1837-1845
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.8b01834
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2019
|e 5
|b 05
|c 02
|h 1837-1845
|