Electronic and Optical Properties of 2D Materials Constructed from Light Atoms

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 46 vom: 25. Nov., Seite e1801600
1. Verfasser: Weng, Qunhong (VerfasserIn)
Weitere Verfasser: Li, Guodong, Feng, Xinliang, Nielsch, Kornelius, Golberg, Dmitri, Schmidt, Oliver G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review 2D structures bandgap engineering electronic and optical luminescence sensing
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boron, carbon, nitrogen, and oxygen atoms can form various building blocks for further construction of structurally well-defined 2D materials (2DMs). Both in theory and experiment, it has been documented that the electronic structures and optical properties of 2DMs are well tunable through a rational design of the material structure. Here, the recent progress on 2DMs that are composed of B, C, N, and O elements is introduced, including borophene, graphene, h-BN, g-C3 N4 , organic 2D polymers (2DPs), etc. Attention is put on the band structure/bandgap engineering for these materials through a variety of methodologies, such as chemical modifications, layer number and atomic structure control, change of conjugation degree, etc. The optical properties, such as photoluminescence, thermoluminescence, single photon emission, as well as the associated applications in bioimaging and sensing, are discussed in detail and highlighted
Beschreibung:Date Completed 13.11.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201801600