Unsupervised Generation of Free-Form and Parameterized Avatars

We study two problems involving the task of mapping images between different domains. The first problem, transfers an image in one domain to an analog image in another domain. The second problem, extends the previous one by mapping an input image to a tied pair, consisting of a vector of parameters...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 2 vom: 06. Feb., Seite 444-459
1. Verfasser: Polyak, Adam (VerfasserIn)
Weitere Verfasser: Taigman, Yaniv, Wolf, Lior
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM28719664X
003 DE-627
005 20231225053458.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2863282  |2 doi 
028 5 2 |a pubmed24n0957.xml 
035 |a (DE-627)NLM28719664X 
035 |a (NLM)30080143 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Polyak, Adam  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Generation of Free-Form and Parameterized Avatars 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We study two problems involving the task of mapping images between different domains. The first problem, transfers an image in one domain to an analog image in another domain. The second problem, extends the previous one by mapping an input image to a tied pair, consisting of a vector of parameters and an image that is created using a graphical engine from this vector of parameters. Similar to the first problem, the mapping's objective is to have the output image as similar as possible to the input image. In both cases, no supervision is given during training in the form of matching inputs and outputs. We compare the two unsupervised learning problems to the problem of unsupervised domain adaptation, define generalization bounds that are based on discrepancy, and employ a GAN to implement network solutions that correspond to these bounds. Experimentally, our methods are shown to solve the problem of automatically creating avatars 
650 4 |a Journal Article 
700 1 |a Taigman, Yaniv  |e verfasserin  |4 aut 
700 1 |a Wolf, Lior  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 2 vom: 06. Feb., Seite 444-459  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:2  |g day:06  |g month:02  |g pages:444-459 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2863282  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 2  |b 06  |c 02  |h 444-459