Logic Computing with Stateful Neural Networks of Resistive Switches

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 38 vom: 05. Sept., Seite e1802554
1. Verfasser: Sun, Zhong (VerfasserIn)
Weitere Verfasser: Ambrosi, Elia, Bricalli, Alessandro, Ielmini, Daniele
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article in-memory computing neural networks neuromorphic resistive switching memory stateful logic
LEADER 01000naa a22002652 4500
001 NLM287190544
003 DE-627
005 20231225053450.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201802554  |2 doi 
028 5 2 |a pubmed24n0957.xml 
035 |a (DE-627)NLM287190544 
035 |a (NLM)30079525 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Zhong  |e verfasserin  |4 aut 
245 1 0 |a Logic Computing with Stateful Neural Networks of Resistive Switches 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.09.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network 
650 4 |a Journal Article 
650 4 |a in-memory computing 
650 4 |a neural networks 
650 4 |a neuromorphic 
650 4 |a resistive switching memory 
650 4 |a stateful logic 
700 1 |a Ambrosi, Elia  |e verfasserin  |4 aut 
700 1 |a Bricalli, Alessandro  |e verfasserin  |4 aut 
700 1 |a Ielmini, Daniele  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 38 vom: 05. Sept., Seite e1802554  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:38  |g day:05  |g month:09  |g pages:e1802554 
856 4 0 |u http://dx.doi.org/10.1002/adma.201802554  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 38  |b 05  |c 09  |h e1802554