Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 130(2018) vom: 30. Sept., Seite 418-430
1. Verfasser: Hairat, Suboot (VerfasserIn)
Weitere Verfasser: Baranwal, Vinay Kumar, Khurana, Paramjit
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Abiotic stress Lipid transfer protein Membrane fluidity Salt stress Salt susceptibility index Triticum aestivum Antigens, Plant Carrier Proteins Plant Proteins mehr... lipid transfer proteins, plant Chlorophyll 1406-65-1
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Role of plant nsLTP in biotic stress is well reported; however, their role during abiotic stress is far from clear. This study comprises genome-wide identification of LTPs and characterizes the regulation and function of two Triticum aestivum lipid transfer proteins, TaLTP40 and TaLTP75, under stresses that influence membrane fluidity. A total of 105 LTP gene family members have been identified. The selected LTPs for functional validation were highly expressed during salt, cold and drought stress. Further, selected LTPs showed differential expression thermotolerant and thermosusceptible wheat cultivars. Higher expression of many TaLTPs was observed under different abiotic stresses in thermotolerant wheat cultivars as compared to thermosusceptible cultivars. TaLTPs regulation was correlated with light energy distribution studies under similar stress conditions. Cellular localization revealed localization of different TaLTPs to the tonoplast membrane along with the organelles involved in the secretory pathway. Induction of TaLTPs was observed upon treatment with dimethylsulphoxide. TaLTP40 and TaLTP75 overexpressing transgenic Arabidopsis showed a constitutively enhanced salt tolerance. Both the TaLTP40 and TaLTP75 overexpressing lines performed better in terms of chlorophyll a fluorescence, total chlorophyll content, membrane injury index, total biomass, percentage germination, percentage survival and relative growth rate. Hence, our analyses indicate that TaLTPs expression might be driven by change in membrane fluidity and could be involved in transferring membrane lipids to the biological membranes thus imparting tolerance to various abiotic stresses
Beschreibung:Date Completed 22.10.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2018.07.030