Temperature-Dependent Plasmonic Responses from Gold Nanoparticle Dimers Linked by Double-Stranded DNA
DNA is a powerful tool to assemble gold nanoparticles into discrete structures with tunable plasmonic properties for photonic or biomedical applications. Because of their photothermal properties or their use in biological media, these nanostructures can experience drastic modifications of the local...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 34(2018), 49 vom: 11. Dez., Seite 14946-14953 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Surface-Active Agents Polyethylene Glycols 3WJQ0SDW1A Gold 7440-57-5 DNA 9007-49-2 |
Zusammenfassung: | DNA is a powerful tool to assemble gold nanoparticles into discrete structures with tunable plasmonic properties for photonic or biomedical applications. Because of their photothermal properties or their use in biological media, these nanostructures can experience drastic modifications of the local temperature that can affect their morphology and, therefore, their optical responses. Using single-nanostructure spectroscopy, we demonstrate that, even with a fully stable DNA linker, gold particle dimers can undergo substantial conformational changes at temperatures larger than 50 °C and aggregate irreversibly. Such temperature-dependent resonant optical properties could find applications in imaging and in the design of nonlinear photothermal sources. Inversely, to provide fully stable DNA-templated plasmonic nanostructures at biologically relevant temperatures, we show how passivating the gold nanoparticles using amphiphilic surface chemistries renders the longitudinal plasmon resonance of gold particle dimers nearly independent of the local temperature |
---|---|
Beschreibung: | Date Completed 05.08.2019 Date Revised 05.08.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b00133 |