Directed Molecular Collection by E-Jet Printed Microscale Chemical Potential Wells in Hydrogel Films

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 38 vom: 10. Sept., Seite e1803140
1. Verfasser: Zhang, Shiyan (VerfasserIn)
Weitere Verfasser: Kieffer, Spencer J, Zhang, Chunjie, Alleyne, Andrew G, Braun, Paul V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article chemical gradients electrohydrodynamic jet printing microscale molecular transport
LEADER 01000naa a22002652 4500
001 NLM287132854
003 DE-627
005 20231225053332.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201803140  |2 doi 
028 5 2 |a pubmed24n0957.xml 
035 |a (DE-627)NLM287132854 
035 |a (NLM)30073702 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Shiyan  |e verfasserin  |4 aut 
245 1 0 |a Directed Molecular Collection by E-Jet Printed Microscale Chemical Potential Wells in Hydrogel Films 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.09.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a A facile approach to locally concentrate analytes of interest will significantly enhance miniaturized, integrated chemical-analysis systems. Here, the directed analyte transport and concentration using ≈200 µm-diameter E-jet printed chemical potential wells in a polyacrylamide hydrogel is demonstrated. Using a cationic well as the model system, anionic analytes are accumulated into a microscale area with a local concentration enhancement of >50-fold relative to the surrounding area. By downscaling the diameter of the chemical potential well from a few millimeters to 100s of micrometers, it is found, using both fluorescence and Raman microscopy, that the molecular collection capacity of the well is greatly improved. Additionally, it is shown that molecules can be simultaneously transported and concentrated to arrays of microscale regions using an array of microscale chemical potential wells. This approach enhances many-fold the limit of detection, enables the formation of microscale potential well arrays with a variety of chemical properties, and provides a novel microscale molecular manipulation technique as an alternative to traditional microfluidic-based systems 
650 4 |a Journal Article 
650 4 |a chemical gradients 
650 4 |a electrohydrodynamic jet printing 
650 4 |a microscale 
650 4 |a molecular transport 
700 1 |a Kieffer, Spencer J  |e verfasserin  |4 aut 
700 1 |a Zhang, Chunjie  |e verfasserin  |4 aut 
700 1 |a Alleyne, Andrew G  |e verfasserin  |4 aut 
700 1 |a Braun, Paul V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 38 vom: 10. Sept., Seite e1803140  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:38  |g day:10  |g month:09  |g pages:e1803140 
856 4 0 |u http://dx.doi.org/10.1002/adma.201803140  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 38  |b 10  |c 09  |h e1803140