Spatial Prediction Filtering for Medical Ultrasound in Aberration and Random Noise

While medical ultrasound imaging has become one of the most widely used imaging modalities in clinics, it often suffers from suboptimal image quality, especially in technically difficult patients with a large amount of fat content that induces severe phase aberration effects and decreases the signal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 65(2018), 10 vom: 30. Okt., Seite 1845-1856
1. Verfasser: Shin, Junseob (VerfasserIn)
Weitere Verfasser: Huang, Lianjie, Yen, Jesse T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM287119319
003 DE-627
005 20231225053314.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2018.2860962  |2 doi 
028 5 2 |a pubmed24n0957.xml 
035 |a (DE-627)NLM287119319 
035 |a (NLM)30072318 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shin, Junseob  |e verfasserin  |4 aut 
245 1 0 |a Spatial Prediction Filtering for Medical Ultrasound in Aberration and Random Noise 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a While medical ultrasound imaging has become one of the most widely used imaging modalities in clinics, it often suffers from suboptimal image quality, especially in technically difficult patients with a large amount of fat content that induces severe phase aberration effects and decreases the signal-to-noise ratio. Several researchers have proposed various techniques, which can be broadly categorized as either a phase aberration correction (PAC) technique or a coherence-based imaging technique, to address the challenges in imaging technically difficult patients. Although both families of techniques have shown some success in improving the image quality in the presence of a mild level of phase aberration and/or random noise, they often fail to achieve meaningful improvements in the image quality and, in some cases, even create severe image artifacts. In this paper, we employ an adaptive filtering technique called frequency-space prediction filtering (FXPF), which we recently introduced in ultrasound imaging, to overcome the weaknesses of existing techniques and achieve image quality improvements more effectively under varying levels of phase aberration and random noise. Using simulated and experimental phantom data with varying levels of phase aberration and random noise, we evaluate and compare the performance of FXPF with the most representative technique for each category: nearest-neighbor cross correlation (NNCC)-based PAC and the generalized coherence factor (GCF). Our simulation, experimental phantom, and in vivo results demonstrate that FXPF is highly robust in varying levels of phase aberration and noise, and always outperforms both NNCC-based PAC and GCF in terms of the contrast-to-noise ratio (CNR) and the contrast when both random noise and phase aberration are present 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Huang, Lianjie  |e verfasserin  |4 aut 
700 1 |a Yen, Jesse T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 65(2018), 10 vom: 30. Okt., Seite 1845-1856  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:65  |g year:2018  |g number:10  |g day:30  |g month:10  |g pages:1845-1856 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2018.2860962  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 65  |j 2018  |e 10  |b 30  |c 10  |h 1845-1856