Self-Healing Micellar Ion Gels Based on Multiple Hydrogen Bonding
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 31. Juli, Seite e1802792 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article block copolymers hydrogen bonds ion gels ionic liquids self-healing |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Ion gels, composed of macromolecular networks filled by ionic liquids (ILs), are promising candidate soft solid electrolytes for use in wearable/flexible electronic devices. In this context, the introduction of a self-healing function would significantly improve the long-term durability of ion gels subject to mechanical loading. Nevertheless, compared to hydrogels and organogels, the self-healing of ion gels has barely investigated been because of there being insufficient understanding of the interactions between polymers and ILs. Herein, a new class of supramolecular micellar ion gel composed of a diblock copolymer and a hydrophobic IL, which exhibits self-healing at room temperature, is presented. The diblock copolymer has an IL-phobic block and a hydrogen-bonding block with hydrogen-bond-accepting and donating units. By combining the IL and the diblock copolymer, micellar ion gels are prepared in which the IL phobic blocks form a jammed micelle core, whereas coronal chains interact with each other via multiple hydrogen bonds. These hydrogen bonds between the coronal chains in the IL endow the ion gel with a high level of mechanical strength as well as rapid self-healing at room temperature without the need for any external stimuli such as light or elevated temperatures |
---|---|
Beschreibung: | Date Revised 27.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201802792 |