|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM287048756 |
003 |
DE-627 |
005 |
20231225053136.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2018.270
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0956.xml
|
035 |
|
|
|a (DE-627)NLM287048756
|
035 |
|
|
|a (NLM)30065132
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Miyoshi, T
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Effects of recirculation and separation times on nitrogen removal in baffled membrane bioreactor (B-MBR)
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.11.2018
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In this study, we investigated the effects of recirculation and separation times on removals of organic matter, nitrogen, and phosphorus in a baffled membrane bioreactor (B-MBR) treating real municipal wastewater. A pilot-scale B-MBR experimental apparatus was operated under two different sets of recirculation and separation times. The results revealed that, irrespective of operating conditions, the biochemical oxygen demand (BOD) and concentration of total nitrogen (T-N) in the treated water can be lowered to less than 3 and 5 mg/L, respectively. Although T-N was effectively removed in the two different operating conditions, increase in the fraction of recirculation time results in tiny deterioration of nitrogen removal efficiency in the B-MBR. Phosphorus removal efficiency was also slightly decreased as the fraction of recirculation time (ratio between recirculation and separation times) was increased. The results of the measurement of dissolved oxygen (DO) profiles at different points of the B-MBR apparatus indicate that the increase in DO concentration in the anoxic zone of the B-MBR becomes much more pronounced by increasing recirculation intensity. On the basis of the results obtained in this study, it can be concluded that efficient removal of BOD, T-N, and total phosphorus can be achieved by the B-MBR as long as appropriate recirculation intensity is selected
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Waste Water
|2 NLM
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
650 |
|
7 |
|a Oxygen
|2 NLM
|
650 |
|
7 |
|a S88TT14065
|2 NLM
|
700 |
1 |
|
|a Tsumuraya, T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nguyen, T P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kimura, K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Watanabe, Y
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 77(2018), 11-12 vom: 15. Juli, Seite 2803-2811
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:77
|g year:2018
|g number:11-12
|g day:15
|g month:07
|g pages:2803-2811
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2018.270
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 77
|j 2018
|e 11-12
|b 15
|c 07
|h 2803-2811
|