Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 9 vom: 01. März, Seite e1800750
1. Verfasser: Qiu, Song (VerfasserIn)
Weitere Verfasser: Wu, Kunjie, Gao, Bing, Li, Liqiang, Jin, Hehua, Li, Qingwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review electronic devices high-purity semiconducting single-walled carbon nanotubes solution-processing
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) are of paramount significance for the construction of next-generation electronics. Until now, a number of elaborate sorting and purification techniques for s-SWCNTs have been developed, among which solution-based sorting methods show unique merits in the scale production, high purity, and large-area film formation. Here, the recent progress in the solution processing of s-SWCNTs and their application in electronic devices is systematically reviewed. First, the solution-based sorting and purification of s-SWCNTs are described, and particular attention is paid to the recent advance in the conjugated polymer-based sorting strategy. Subsequently, the solution-based deposition and morphology control of a s-SWCNT thin film on a surface are introduced, which focus on the strategies for network formation and alignment of SWCNTs. Then, the recent advances in electronic devices based on s-SWCNTs are reviewed with emphasis on nanoscale s-SWCNTs' high-performance integrated circuits and s-SWCNT-based thin-film transistors (TFT) array and circuits. Lastly, the existing challenges and development trends for the s-SWCNTs and electronic devices are briefly discussed. The aim is to provide some useful information and inspiration for the sorting and purification of s-SWCNTs, as well as the construction of electronic devices with s-SWCNTs
Beschreibung:Date Completed 04.03.2019
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201800750