Single Image Super-Resolution via Multiple Mixture Prior Models

Example learning-based single image super-resolution (SR) is a promising method for reconstructing a high-resolution (HR) image from a single-input low-resolution (LR) image. Lots of popular SR approaches are more likely either time-or space-intensive, which limit their practical applications. Hence...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 12 vom: 26. Dez., Seite 5904-5917
1. Verfasser: Huang, Yuanfei (VerfasserIn)
Weitere Verfasser: Li, Jie, Gao, Xinbo, He, Lihuo, Lu, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286992159
003 DE-627
005 20231225053013.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2860685  |2 doi 
028 5 2 |a pubmed24n0956.xml 
035 |a (DE-627)NLM286992159 
035 |a (NLM)30059304 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Yuanfei  |e verfasserin  |4 aut 
245 1 0 |a Single Image Super-Resolution via Multiple Mixture Prior Models 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2018 
500 |a Date Revised 07.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Example learning-based single image super-resolution (SR) is a promising method for reconstructing a high-resolution (HR) image from a single-input low-resolution (LR) image. Lots of popular SR approaches are more likely either time-or space-intensive, which limit their practical applications. Hence, some research has focused on a subspace view and delivered state-of-the-art results. In this paper, we utilize an effective way with mixture prior models to transform the large nonlinear feature space of LR images into a group of linear subspaces in the training phase. In particular, we first partition image patches into several groups by a novel selective patch processing method based on difference curvature of LR patches, and then learning the mixture prior models in each group. Moreover, different prior distributions have various effectiveness in SR, and in this case, we find that student-t prior shows stronger performance than the well-known Gaussian prior. In the testing phase, we adopt the learned multiple mixture prior models to map the input LR features into the appropriate subspace, and finally reconstruct the corresponding HR image in a novel mixed matching way. Experimental results indicate that the proposed approach is both quantitatively and qualitatively superior to some state-of-the-art SR methods 
650 4 |a Journal Article 
700 1 |a Li, Jie  |e verfasserin  |4 aut 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
700 1 |a He, Lihuo  |e verfasserin  |4 aut 
700 1 |a Lu, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 12 vom: 26. Dez., Seite 5904-5917  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:12  |g day:26  |g month:12  |g pages:5904-5917 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2860685  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 12  |b 26  |c 12  |h 5904-5917