|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM286992159 |
003 |
DE-627 |
005 |
20231225053013.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2018.2860685
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0956.xml
|
035 |
|
|
|a (DE-627)NLM286992159
|
035 |
|
|
|a (NLM)30059304
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Huang, Yuanfei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Single Image Super-Resolution via Multiple Mixture Prior Models
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.09.2018
|
500 |
|
|
|a Date Revised 07.09.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Example learning-based single image super-resolution (SR) is a promising method for reconstructing a high-resolution (HR) image from a single-input low-resolution (LR) image. Lots of popular SR approaches are more likely either time-or space-intensive, which limit their practical applications. Hence, some research has focused on a subspace view and delivered state-of-the-art results. In this paper, we utilize an effective way with mixture prior models to transform the large nonlinear feature space of LR images into a group of linear subspaces in the training phase. In particular, we first partition image patches into several groups by a novel selective patch processing method based on difference curvature of LR patches, and then learning the mixture prior models in each group. Moreover, different prior distributions have various effectiveness in SR, and in this case, we find that student-t prior shows stronger performance than the well-known Gaussian prior. In the testing phase, we adopt the learned multiple mixture prior models to map the input LR features into the appropriate subspace, and finally reconstruct the corresponding HR image in a novel mixed matching way. Experimental results indicate that the proposed approach is both quantitatively and qualitatively superior to some state-of-the-art SR methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Li, Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Xinbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Lihuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Wen
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 27(2018), 12 vom: 26. Dez., Seite 5904-5917
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2018
|g number:12
|g day:26
|g month:12
|g pages:5904-5917
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2018.2860685
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2018
|e 12
|b 26
|c 12
|h 5904-5917
|