Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures

OBJECTIVE: In tropical regions, as in temperate regions where seasonality of forage production occurs, well-preserved forage is necessary for animal production during periods of forage shortage. However, the unique climate conditions (hot and humid) and forage characteristics (high moisture content...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Asian-Australasian journal of animal sciences. - 1998. - 32(2019), 5 vom: 28. Mai, Seite 665-674
1. Verfasser: Li, Dongxia (VerfasserIn)
Weitere Verfasser: Ni, Kuikui, Zhang, Yingchao, Lin, Yanli, Yang, Fuyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Asian-Australasian journal of animal sciences
Schlagworte:Journal Article Bacterial Diversity Fermentation Silage Tropical Forage
Beschreibung
Zusammenfassung:OBJECTIVE: In tropical regions, as in temperate regions where seasonality of forage production occurs, well-preserved forage is necessary for animal production during periods of forage shortage. However, the unique climate conditions (hot and humid) and forage characteristics (high moisture content and low soluble carbohydrate) in the tropics make forage preservation more difficult. The current study used natural ensiling of tropical forage as a model to evaluate silage characteristics under different temperatures (28°C and 40°C)
METHODS: Four tropical forages (king grass, paspalum, white popinac, and stylo) were ensiled under different temperatures (28°C and 40°C). After ensiling for 30 and 60 days, samples were collected to examine the fermentation quality, chemical composition and microbial community
RESULTS: High concentrations of acetic acid (ranging from 7.8 to 38.5 g/kg dry matter [DM]) were detected in silages of king grass, paspalum and stylo with relatively low DM (ranging from 23.9% to 30.8% fresh material [FM]) content, acetic acid production was promoted with increased temperature and prolonged ensiling. Small concentrations of organic acid (ranging from 0.3 to 3.1 g/kg DM) were detected in silage of white popinac with high DM content (50.8% FM). The microbial diversity analysis indicated that Cyanobacteria originally dominated the bacterial community for these four tropical forages and was replaced by Lactobacillus and Enterobacter after ensiling
CONCLUSION: The results suggested that forage silages under tropical climate conditions showed enhanced acetate fermentation, while high DM materials showed limited fermentation. Lactobacillus and Enterobacter were the most probable genera responsible for tropical silage fermentation
Beschreibung:Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1011-2367
DOI:10.5713/ajas.18.0085