Low-Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 23. Juli, Seite e1802353
Auteur principal: Sharbati, Mohammad Taghi (Auteur)
Autres auteurs: Du, Yanhao, Torres, Jorge, Ardolino, Nolan D, Yun, Minhee, Xiong, Feng
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article artificial synapse electrochemical intercalation graphene neuromorphic computing
LEADER 01000caa a22002652 4500
001 NLM28673995X
003 DE-627
005 20250223204103.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201802353  |2 doi 
028 5 2 |a pubmed25n0955.xml 
035 |a (DE-627)NLM28673995X 
035 |a (NLM)30033599 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sharbati, Mohammad Taghi  |e verfasserin  |4 aut 
245 1 0 |a Low-Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Brain-inspired neuromorphic computing has the potential to revolutionize the current computing paradigm with its massive parallelism and potentially low power consumption. However, the existing approaches of using digital complementary metal-oxide-semiconductor devices (with "0" and "1" states) to emulate gradual/analog behaviors in the neural network are energy intensive and unsustainable; furthermore, emerging memristor devices still face challenges such as nonlinearities and large write noise. Here, an electrochemical graphene synapse, where the electrical conductance of graphene is reversibly modulated by the concentration of Li ions between the layers of graphene is presented. This fundamentally different mechanism allows to achieve a good energy efficiency (<500 fJ per switching event), analog tunability (>250 nonvolatile states), good endurance, and retention performances, and a linear and symmetric resistance response. Essential neuronal functions such as excitatory and inhibitory synapses, long-term potentiation and depression, and spike timing dependent plasticity with good repeatability are demonstrated. The scaling study suggests that this simple, two-dimensional synapse is scalable in terms of switching energy and speed 
650 4 |a Journal Article 
650 4 |a artificial synapse 
650 4 |a electrochemical intercalation 
650 4 |a graphene 
650 4 |a neuromorphic computing 
700 1 |a Du, Yanhao  |e verfasserin  |4 aut 
700 1 |a Torres, Jorge  |e verfasserin  |4 aut 
700 1 |a Ardolino, Nolan D  |e verfasserin  |4 aut 
700 1 |a Yun, Minhee  |e verfasserin  |4 aut 
700 1 |a Xiong, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2018) vom: 23. Juli, Seite e1802353  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2018  |g day:23  |g month:07  |g pages:e1802353 
856 4 0 |u http://dx.doi.org/10.1002/adma.201802353  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 23  |c 07  |h e1802353