FeatureLego : Volume Exploration Using Exhaustive Clustering of Super-Voxels
We present a volume exploration framework, FeatureLego, that uses a novel voxel clustering approach for efficient selection of semantic features. We partition the input volume into a set of compact super-voxels that represent the finest selection granularity. We then perform an exhaustive clustering...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on visualization and computer graphics. - 1996. - 25(2019), 9 vom: 18. Sept., Seite 2725-2737
|
Auteur principal: |
Jadhav, Shreeraj
(Auteur) |
Autres auteurs: |
Nadeem, Saad,
Kaufman, Arie |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2019
|
Accès à la collection: | IEEE transactions on visualization and computer graphics
|
Sujets: | Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S. |