Low Rank Matrix Recovery via Robust Outlier Estimation

In practice, high-dimensional data are typically sampled from low-dimensional subspaces, but with intrusion of outliers and/or noises. Recovering the underlying structure and the pollution from the observations is of utmost importance to understanding the data. Besides properly modeling the subspace...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 12. Juli
Auteur principal: Guo, Xiaojie (Auteur)
Autres auteurs: Lin, Zhouchen
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article