Low Rank Matrix Recovery via Robust Outlier Estimation
In practice, high-dimensional data are typically sampled from low-dimensional subspaces, but with intrusion of outliers and/or noises. Recovering the underlying structure and the pollution from the observations is of utmost importance to understanding the data. Besides properly modeling the subspace...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 12. Juli |
---|---|
Auteur principal: | |
Autres auteurs: | |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |